伊人蕉久中文字幕无码专区-伊人精品国产-伊人精品线视天天综合-伊人久久成人爱综合网-国产17p-国产182ty

Robust Servo Motors Survive Space X Launch Conditions

0Comments 2341Views Category:Applications Case

Robust Servo Motors Survive Launch Conditions to Optimize Rocket Fuel Burn

The Falcon 9 launch vehicle consists of a payload nacell atop two stages. Stage one consists of nine engines (lower black band) fed by a fuel tank above it. Stage two consists of one engine (upper black band) and a corresponding fuel tank.

Amid tightening budgets, space agencies are increasingly looking to the commercial space sector to provide the launch vehicles of the future, and Space Exploration Technologies (SpaceX) is right there to help. The company builds high-reliability, economical launch vehicles like the Falcon 9 to carry a range of payloads into orbit (see figure 1). One way to control cost is by optimizing fuel burned during launch to minimize waste. The SpaceX team ensures top performance with the help of a special fuel-trim valve, powered by robust, reliable servo motors from MICROMO (the FAULHABER Group).

Rockets like the Falcon 9 and Falcon 1 at SpaceX burn a fuel known as RP-1, a highly refined form of kerosene that must be mixed with oxygen in order to burn. On the launch vehicle, 4-in pipes run from tanks of RP-1 and liquid oxygen (LOX) to combine prior to entering the combustion chamber.

The combustion chemistry of RP-1 is forgiving. The fuel won’t burn without oxygen, but as long as oxygen is present, the two do not need to be combined in a precise ratio. “If the mixture is slightly lean, it is still going to burn decently," says Juerg Frefel, Avionics Engineer at SpaceX. The problem is that if the ratio of LOX to RP-1 varies from the optimum mix, either the oxygen will run out before the fuel or the fuel before the oxygen. Once combustion stops, the material left becomes dead weight, turning from propellant to liability. To ensure this doesn’t happen, the fuel-trim valve adjusts the mixture in real time.


The fuel-trim device consists of a servo-motor-controlled butterfly valve. To achieve the proper speed and torque, the design incorporates a planetary gearbox for a roughly 151:1 reduction ratio, plus additional gearing internal to the unit. The team qualified the components with a significant safety margin to protect against common-mode failure. The shaft of the motor interfaces with the valve directly to make fine adjustments. “The basic mixture ratio is given by the sizing of the tubes, and a small amount of the flow of each one gets trimmed out,” explains Frefel. “We only adjust a fraction of the whole fuel flow.”

The Falcon 9 launch vehicle is a two-stage vehicle with a total of ten engines, each with its own fuel-trim valve. To ensure the proper mix, the valve operates in a double closed loop based on feedback from a triplicate feedback mechanism. The first stage features nine engines that burn for approximately three minutes, and the second stage includes one engine that burns for approximately seven minutes (see figure 2). Because of the duration of the burn for each stages, the control loops can actually run relatively slowly. “The whole valve doesn't necessarily need to be fast,” says Frefel. “It's a closed-loop system, which means that the command to the valve is to go to a certain angle. The outer loop adjusts the angle of the valve and the inner loop keeps the position steady in case it gets pushed around [by shock/vibration].”

Tough Enough  Accuracy aside, the characteristics most applications require from servo motors tend to be high torque, high speed, or small size. In the case of the fuel-trim valve, the chief motor requirement was simple: They had to survive launch. The shock and vibration produced in the first stage, in particular, are extreme (see figure 3). “For the three minutes of the first stage, the engine is producing 100,000 lb. of thrust,” says Frefel. “It's quite a violent event and [the fuel-trim valve] is right next to the engine.”

When the engineering team set out to qualify components for the fuel-trim valve, vibration testing caused motor after motor to fail. “We have vibration fixtures and tables here where we can simulate the engine environment,” says Frefel. “We basically went through a whole bunch of motors from different vendors to see which one would hold up." To minimize points of failure, they switched from brushed to brushless motors. “The main performance issue for us was could it survive the environment? That meant that the gearbox stayed on, the Hall-effect sensors weren’t damaged, that nothing bad happened in the extreme environment. We just [kept looking] until we found the manufacturer of motors that survived.” In the end, that manufacturer was MICROMO.Rocket engines produce heat as well as vibration, but contrary to what a person might think, thermal management does not pose a significant challenge in this application.Much of the heat is radiated and is reflected away. In addition, given the relatively brief duration of the stages, the unit’s thermal mass makes it resistant to rapid temperature swings. “The actuator still has three to four pounds of mass, which means that in three minutes it doesn't heat up that dramatically,” Frefel says.

Interestingly, the thermal issue he does mention is low, not high temperatures. During the second stage, for example, the engines may fire only briefly. The vehicle can then coast for as long as 45 min before a second burn takes place. By this point, the rocket is outside of the atmosphere, where temperatures can be quite low.

To control cost and production timelines, the SpaceX philosophy is to try to work with stock components whenever  


possible. Nothing special was done to the MICROMO motors to ruggedize them for the application; the design team simply ordered standard products. Leveraging MICROMO's express prototyping program, the SpaceX team was able toobtain samples in very short time frames. "They were either in stock in the United States or they had them within a few days," said Frefel. “They do a good job of having small volumes that can allow you to try out different gear ratios for different topologies. I was quite impressed by how easy it was.

"As schedule and budgetary pressures cause NASA to increasingly lean toward commercial orbital transportation services, opportunity in this sector is on the rise. With the help of MICROMO, SpaceX delivers robust, reliable technology at an appealing price point.





頂一下
(2)
100%
踩一下
(0)
0%

發表評論共有0訪客發表了評論

    暫無評論,快來搶沙發吧!

我來說幾句吧

驗證碼: 看不清楚?
主站蜘蛛池模板: 亚洲第一免费播放区 | 国产精品久久久久无毒 | 欧美日本一区二区三区生 | 久久综合久久久久 | 99久久精品免费看国产免费 | 国产亚洲免费观看 | 免费的a级毛片 | 99视频精品全国免费 | 免费公开视频人人人人人人人 | 国产第一夜 | 欧美精品在线一区 | 男女性高爱潮免费网站 | 免费人成激情视频在线观看冫 | 911国产自产精选 | 国产亚洲精品精品国产亚洲综合 | 久久久久久亚洲精品 | 香蕉成人 | 美女张开腿让男人桶下面 | 亚洲成人高清在线 | 国产日韩欧美三级 | 高清性色生活片欧美在线 | 久久精品国产精品亚洲人人 | 黄色片日本人 | 国产精品国产三级国产专 | 一区二区三区四区视频在线观看 | 免费国产视频在线观看 | 国产免费成人在线视频 | 日韩亚洲欧美一区二区三区 | 亚洲区精选网址 | 免费看欧美一级特黄a大片一 | 性盈盈影院影院 | 在线观看亚洲天堂 | 日韩三级在线观看 | 亚洲在线看 | 草久在线播放 | 中国做爰国产精品视频 | www.黄色大片| 成人满18在线观看网站免费 | 特级毛片全部免费播放器 | 视频一区久久 | 在线欧美精品二区三区 |